# DEX 交易算子的线性与非线性探讨在开发去中心化交易所(DEX)时,核心是设计一个交易算子。这个算子可以是线性或非线性的,这一区别同样适用于设计利率算子。然而,大多数人可能还不太理解这种区别的重要性。线性交易算子通常基于均衡价格理论,假设市场无套利机会。在这种情况下,资产组合只是在均衡价格下进行简单的线性变换。理论上,使用预言机的交易模型应该采用线性交易算子,否则可能会被套利。从另一个角度来看,在完备且定价有效的市场中,只有线性交易算子才能保证无套利。然而,线性算子有一个显著特征:所有资金池都是平等的,且该算子无法被代币化。这是因为在给定均衡价格的情况下,资产交易在任何合约中都是等价的,仅仅是简单的线性变换。因此,任何交易合约或算子都难以捕获价值并实现代币化。相比之下,非线性交易算子试图同时完成定价、交易和价值沉淀(代币化)三个目标。非线性算子可以设计成与规模相关的自增强属性,从而沉淀价值。但这种方法也面临一些挑战:1. 当市场逐渐完备时,非线性交易算子本质上是在极小的交易规模里拟合线性算子。2. 在市场不完备时,非线性交易算子的设计成本和效率是否合理?3. 非线性算子的价值输入来源是什么?这种价值输入是否会在线性交易算子的竞争下逐渐流失?目前,许多自动做市商(AMM)采用固定乘积的交易模型(如XY=K),这是一种典型的规模相关的非线性交易算子。只有当做市商池子足够大时,才能在局部模拟线性交易。然而,这种有效性并不是很本质。值得注意的是,许多人希望将定价权放在链上,但这可能是一种误解。在完备市场中,中心化交易所的优势显著。链上交易的离散性和拍卖属性使其难以用于完备市场的有效定价。对于不完备市场,如尾部资产或新项目,关键需求应该是快速低成本形成价格并完成较大量的交易。非线性交易算子同时处理定价和交易,但需要面对接受预言机的线性交易模型的竞争。在交易效率方面,预言机下的线性交易算子远超非线性算子。剩下的可比较优势主要在于定价成本和效率,但直觉上线性算子也处于优势地位。从价值输入的角度来看,非线性交易算子面临严峻挑战。在完备市场中,需要大量小额交易来补偿非线性算子在均衡价格波动时的套利损失。然而,链上交易的边际成本增加可能会淘汰这些小额需求。在高度不完备的市场中,尽管存在不在乎价格滑点的交易者,但这又导致模型向线性化发展,不利于价值沉淀。基于以上分析,交易算子的非线性化可能并不是一个有价值的方向。在链上沉淀去中心化价值的协议中,非线性交易算子可能不是我们应该追求的类型。值得一提的是,利率算子作为一种特殊的交易算子,由于利率套利的困难性,在当前链上借贷市场中仍有一定应用空间。然而,这更多是一种权宜之计,而非本质创新。未来,非线性交易算子的改进可能需要引入递归信息,即从历史成交信息中捕捉有价值的成分,以降低套利风险。这个方向目前研究较少,但已有人意识到可以通过递归算子和非线性交易算子的结合来降低当前DEX的无常损失等问题。最终,金融服务的发展方向应该是将所有服务统一在算子理论下,得到更多有效的数学方程,从而实现更有效和完整的产品设计,推动链上金融世界的发展。
DEX交易算子的线性与非线性权衡:效率、定价与价值沉淀
DEX 交易算子的线性与非线性探讨
在开发去中心化交易所(DEX)时,核心是设计一个交易算子。这个算子可以是线性或非线性的,这一区别同样适用于设计利率算子。然而,大多数人可能还不太理解这种区别的重要性。
线性交易算子通常基于均衡价格理论,假设市场无套利机会。在这种情况下,资产组合只是在均衡价格下进行简单的线性变换。理论上,使用预言机的交易模型应该采用线性交易算子,否则可能会被套利。从另一个角度来看,在完备且定价有效的市场中,只有线性交易算子才能保证无套利。
然而,线性算子有一个显著特征:所有资金池都是平等的,且该算子无法被代币化。这是因为在给定均衡价格的情况下,资产交易在任何合约中都是等价的,仅仅是简单的线性变换。因此,任何交易合约或算子都难以捕获价值并实现代币化。
相比之下,非线性交易算子试图同时完成定价、交易和价值沉淀(代币化)三个目标。非线性算子可以设计成与规模相关的自增强属性,从而沉淀价值。但这种方法也面临一些挑战:
目前,许多自动做市商(AMM)采用固定乘积的交易模型(如XY=K),这是一种典型的规模相关的非线性交易算子。只有当做市商池子足够大时,才能在局部模拟线性交易。然而,这种有效性并不是很本质。
值得注意的是,许多人希望将定价权放在链上,但这可能是一种误解。在完备市场中,中心化交易所的优势显著。链上交易的离散性和拍卖属性使其难以用于完备市场的有效定价。对于不完备市场,如尾部资产或新项目,关键需求应该是快速低成本形成价格并完成较大量的交易。
非线性交易算子同时处理定价和交易,但需要面对接受预言机的线性交易模型的竞争。在交易效率方面,预言机下的线性交易算子远超非线性算子。剩下的可比较优势主要在于定价成本和效率,但直觉上线性算子也处于优势地位。
从价值输入的角度来看,非线性交易算子面临严峻挑战。在完备市场中,需要大量小额交易来补偿非线性算子在均衡价格波动时的套利损失。然而,链上交易的边际成本增加可能会淘汰这些小额需求。在高度不完备的市场中,尽管存在不在乎价格滑点的交易者,但这又导致模型向线性化发展,不利于价值沉淀。
基于以上分析,交易算子的非线性化可能并不是一个有价值的方向。在链上沉淀去中心化价值的协议中,非线性交易算子可能不是我们应该追求的类型。
值得一提的是,利率算子作为一种特殊的交易算子,由于利率套利的困难性,在当前链上借贷市场中仍有一定应用空间。然而,这更多是一种权宜之计,而非本质创新。
未来,非线性交易算子的改进可能需要引入递归信息,即从历史成交信息中捕捉有价值的成分,以降低套利风险。这个方向目前研究较少,但已有人意识到可以通过递归算子和非线性交易算子的结合来降低当前DEX的无常损失等问题。
最终,金融服务的发展方向应该是将所有服务统一在算子理论下,得到更多有效的数学方程,从而实现更有效和完整的产品设计,推动链上金融世界的发展。